Nonlinear Matroid Optimization and Experimental Design

نویسندگان

  • Yael Berstein
  • Jon Lee
  • Hugo Maruri-Aguilar
  • Shmuel Onn
  • Eva Riccomagno
  • Robert Weismantel
  • Henry P. Wynn
چکیده

We study the problem of optimizing nonlinear objective functions over matroids presented by oracles or explicitly. Such functions can be interpreted as the balancing of multi-criteria optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that makes repeated use of matroid intersection, and an algebraic algorithm for vectorial matroids. Our work is partly motivated by applications to minimum-aberration model-fitting in experimental design in statistics, which we discuss and demonstrate in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroid Optimization and Experimental Design ∗

We study the problem of optimizing nonlinear objective functions over matroids presented by oracles or explicitly. Such functions can be interpreted as the balancing of multicriteria optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that makes repeated use of matroid intersection and an algebraic algorithm for vectorial matroids. Our wor...

متن کامل

Concentration inequalities for nonlinear matroid intersection

In this work we propose new randomized rounding algorithms for matroid intersection and matroid base polytopes. We prove concentration inequalities for polynomial objective functions and constraints that has numerous applications and can be used in approximation algorithms for Minimum Quadratic Spanning Tree, Unrelated Parallel Machines Scheduling and Scheduling with Time Windows and Nonlinear ...

متن کامل

L-convex Functions and M- Convex Functions Encyclopedia of Optimization (kluwer)

In the eld of nonlinear programming (in continuous variables) convex analysis [21, 22] plays a pivotal role both in theory and in practice. An analogous theory for discrete optimization (nonlinear integer programming), called \discrete convex analysis" [18, 17], is developed for L-convex and M-convex functions by adapting the ideas in convex analysis and generalizing the results in matroid theo...

متن کامل

OPTIMAL DESIGN OF DOUBLE LAYER GRIDS CONSIDERING NONLINEAR BEHAVIOUR BY SEQUENTIAL GREY WOLF ALGORITHM

The present paper tackles the optimization problem of double layer grids considering nonlinear behaviour. In this paper, an efficient optimization algorithm is proposed to achieve the optimization task based on the newly developed grey wolf algorithm (GWA) termed as sequential GWA (SGWA). In the framework of SGWA, a sequence of optimization processe...

متن کامل

Resilient Non-Submodular Maximization over Matroid Constraints

Applications in control, robotics, and optimizationmotivate the design of systems by selecting system elements,such as actuators, sensors, or data, subject to complex designconstraints that require the system elements not only to bea few in number, but also, to satisfy heterogeneity or global-interdependency constraints; in particular, matroid constraints.However, in fai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2008